Metal-catalyzed carbon-carbon bond formations

(Alain Burger) burger@unice.fr

Bibliography :

Didier Astruc « Chimie organométallique et catalyse » (2013) edp Sciences

Robert H Crabtree « The Organometallic Chemistry of the Transition Metals » (2009) Wiley-Blackwell

Ei-ichi Negishi « Handbook of Organopalladium Chemistry for Organic Synthesis » (2003) Wiley-interscience

http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/orgmetal.htm

Amatore, C. & Jutand, A. Anionic Pd(0) and Pd(II) Intermediates in Palladium-Catalyzed Heck and Cross-Coupling Reactions. *Acc. Chem. Res.* **33**, 314–321 (2000).

Amatore, C., Le Duc, G. & Jutand, A. Mechanism of Palladium-Catalyzed Suzuki-Miyaura Reactions: Multiple and Antagonistic Roles of Anionic 'Bases' and Their Countercations. *Chem. Eur. J.* **19**, 10082–10093 (2013).

Transition metals and organic synthesis	
A) C-C et C-Het bond formation I) Background	
 II) Catalyzed reactions (Palladium, Nickel, Co) Negishi coupling Stille coupling Suzuki coupling Sonogashira coupling Heck coupling Heck coupling Buchwald-Hartwig coupling m-allyl complexes (Tsuji-Trost) CO insertion Wacker process Oxidative coupling of alkynes 2+2+2 (Volhardt) 	

Palladium in organic synthesis	
Pd° : (Kr) 4d ¹⁰	
Pd ⁰ : nucleophile Pd ²⁺ : electophile	Geometry: tetrahedral & square planar
PdOAc₂: 5 g 235 € catalyst	
Reactivity of Pd(0) complexes, ex $Ar \land X \circ u = Ar \land X \circ u =$	$Pd(PPh_{3})_{4}$ $RCOX \Rightarrow = \begin{array}{c} X \\ = \begin{array}{c} X \\ = \end{array} \Rightarrow Ar - X \Rightarrow Alkyl - X \\ = -X \end{array}$
I > OTf, Br > Cl > OZ > NZ ₂ Pd-C ≠ Mg-C ou Li-C	
Compatibility: ketone, ester,	amide, even aldehydes

	Zn	В	Sn
Toxicity	No	No	Yes
Reactivity (<mark>R</mark> -M)	++	+ à ++	+
Chemioselectivity – sensitivity to :			
- Ketone, ester, nitro, amide, nitrile…	No	No (! Basic)	No
- Aldehyde	Yes	Yes	No
- O ₂ , H ₂ 0, ROH	Yes	No (RB(OR')2)	No
Regioselectivity	Yes	Yes	Yes
Stereoselectivity	Yes	Yes	Yes

$R_1M + R_2X = \frac{P_1}{P_1}$	dL _n cat. ► R ₁ -R ₂ + MX
R ₁ = C : R ₂ = C :	sp, sp², sp³ sp, sp², sp³
R-M	Metal
Aryl-M Alkenyl-M	Zn, B, Sn
R' - M	Sonogashira (Zn, B, Sn)
Benzyl, propargyl, Allyl-M	Sn, Zn
Alkyl-M	B (Zn)
OM	Zn, B, Sn

<mark>R₁M + R₂</mark> X −	² dL _n cat. ► R ₁ -R ₂ + MX
R ₁ = C R ₂ = C	sp, sp ² , sp ³ sp, sp ² , sp ³
R-X	Metal
Aryl-X Alkenyl-X	Zn, B, Sn
Benzyl, Propargyl, Allyl-X	Zn, Sn
R ^O X	Sn
+ CO	Sn (B) (R ₂ COR ₁)
L	

	Zn	В	Sn
Transmetallation (<mark>R</mark> -Li, <mark>R</mark> -MgX)	Yes	Yes	Yes
Oxidative addition (R-X)	possible	$(RO)_2B-B(OR)_2$ + Pd° cat.	R₃Sn-SnR₃ + Pd° cat.
Hydrometallation : (M-H)	(HAl(<i>i</i> Bu) ₂ ou HZrCp ₂ Cl)	HBY ₂	HSnR₃

